Pickfood Geilo Meeting

Francoise Brochard-Wyart

Pipette aspiration of oil in water pickering droplets:

Surface tension of pickering emulsion close-packed jamming of particles

Arrested Coalescence in Pickering emulsions

Micropipette aspiration: from droplets to gas vesicles

Jaakko Timonem group Piezoelectric pressure controller: from +1to -1bar, resolution 1Pa

Gregory Beaune

Living Droplets Coercavates Jelly beads

Karine Guevorkian

Vesicles, cells, nuclei **Polymersomes** Pickering emulsions

Gas vesicles, protein coated bubbles

Pipette aspiration of oil in water pickering droplets (silica colloids d=500nm)

Microscopie images of pickering droplets

- A epifluorescence
- B bright field
- C Z scan
- D 3d reconstruction

Aspiration of ultra-rigid bubbles: gas extraction regime

$$f_M = \pi R_p^2 \left[\Delta P - \frac{2\gamma}{R_p} + 2 \frac{\sigma_0}{R} \right]$$

 $\Delta P > \frac{2\gamma}{R_p}$, ~18 kPa for $R_p = 7 \ \mu \text{m}$ and $\gamma = 64.5 \ \text{mN m}^{-1}$.

tongue of gas expends.

$$\sigma_y > \Delta P > \frac{2\gamma}{R_p}$$

$$\dot{L} = \frac{R_p^2}{8L_t \eta} \left(\Delta P - \frac{2\gamma}{R_p} \right)$$

 \dot{L} = 200 µm s⁻¹

Hedar Al-Terke, Grégory Beaune, Jaakko Timonen, Françoise Brochard-Wyart^a and Robin H. A. Ras^a PNAS 2023

Extraction of oil from pickering droplet

T.Spicer (Procter and Gamble) Soft matter 2011

Coalescence in Pickering emulsions

Fig. 1 Microphotographic montage of the coalescence dynamics between two hexadecane droplets and plot of the % change in the total surface area (100% being the total surface area of two droplets) against time as the coalescence proceeds. Images (b)–(e) represent intermediate microscopic images of coalescing droplets. The scale bar is 50 μ m.

T.Spicer (Procter and Gamble) Soft matter 2011

Arrested Coalescence in Pickering emulsions

Fig. 5 Coalescence behavior as a function of the droplet surface coverage. (a) Total stability, (b) and (c) arrested coalescence, and (d) total coalescence of Pickering droplets. Scale bars $=50~\mu m$. Please refer to the ESI† for coalescence movies.

Fig. 6 Different coalescence regimes (total coalescence, arrested coalescence and total stability) as a function of the droplet surface coverage. The dashed line indicates the surface coverage condition ($\phi_1 + \phi_2 = 1.43$). The dotted lines indicate the maximum surface coverage that the droplets can possess. Since ϕ_1 and ϕ_2 are interchangeable, the data is symmetrical.

a result of total analogous hatrian true deanlate (radii D and